\(\int \frac {(b d+2 c d x)^{3/2}}{(a+b x+c x^2)^3} \, dx\) [1314]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [B] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F(-2)]
   Giac [B] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 26, antiderivative size = 178 \[ \int \frac {(b d+2 c d x)^{3/2}}{\left (a+b x+c x^2\right )^3} \, dx=-\frac {d \sqrt {b d+2 c d x}}{2 \left (a+b x+c x^2\right )^2}-\frac {c d \sqrt {b d+2 c d x}}{2 \left (b^2-4 a c\right ) \left (a+b x+c x^2\right )}+\frac {3 c^2 d^{3/2} \arctan \left (\frac {\sqrt {d (b+2 c x)}}{\sqrt [4]{b^2-4 a c} \sqrt {d}}\right )}{\left (b^2-4 a c\right )^{7/4}}+\frac {3 c^2 d^{3/2} \text {arctanh}\left (\frac {\sqrt {d (b+2 c x)}}{\sqrt [4]{b^2-4 a c} \sqrt {d}}\right )}{\left (b^2-4 a c\right )^{7/4}} \]

[Out]

3*c^2*d^(3/2)*arctan((d*(2*c*x+b))^(1/2)/(-4*a*c+b^2)^(1/4)/d^(1/2))/(-4*a*c+b^2)^(7/4)+3*c^2*d^(3/2)*arctanh(
(d*(2*c*x+b))^(1/2)/(-4*a*c+b^2)^(1/4)/d^(1/2))/(-4*a*c+b^2)^(7/4)-1/2*d*(2*c*d*x+b*d)^(1/2)/(c*x^2+b*x+a)^2-1
/2*c*d*(2*c*d*x+b*d)^(1/2)/(-4*a*c+b^2)/(c*x^2+b*x+a)

Rubi [A] (verified)

Time = 0.09 (sec) , antiderivative size = 178, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.269, Rules used = {700, 701, 708, 335, 218, 212, 209} \[ \int \frac {(b d+2 c d x)^{3/2}}{\left (a+b x+c x^2\right )^3} \, dx=\frac {3 c^2 d^{3/2} \arctan \left (\frac {\sqrt {d (b+2 c x)}}{\sqrt {d} \sqrt [4]{b^2-4 a c}}\right )}{\left (b^2-4 a c\right )^{7/4}}+\frac {3 c^2 d^{3/2} \text {arctanh}\left (\frac {\sqrt {d (b+2 c x)}}{\sqrt {d} \sqrt [4]{b^2-4 a c}}\right )}{\left (b^2-4 a c\right )^{7/4}}-\frac {c d \sqrt {b d+2 c d x}}{2 \left (b^2-4 a c\right ) \left (a+b x+c x^2\right )}-\frac {d \sqrt {b d+2 c d x}}{2 \left (a+b x+c x^2\right )^2} \]

[In]

Int[(b*d + 2*c*d*x)^(3/2)/(a + b*x + c*x^2)^3,x]

[Out]

-1/2*(d*Sqrt[b*d + 2*c*d*x])/(a + b*x + c*x^2)^2 - (c*d*Sqrt[b*d + 2*c*d*x])/(2*(b^2 - 4*a*c)*(a + b*x + c*x^2
)) + (3*c^2*d^(3/2)*ArcTan[Sqrt[d*(b + 2*c*x)]/((b^2 - 4*a*c)^(1/4)*Sqrt[d])])/(b^2 - 4*a*c)^(7/4) + (3*c^2*d^
(3/2)*ArcTanh[Sqrt[d*(b + 2*c*x)]/((b^2 - 4*a*c)^(1/4)*Sqrt[d])])/(b^2 - 4*a*c)^(7/4)

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 218

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[-a/b, 2]], s = Denominator[Rt[-a/b, 2]]},
Dist[r/(2*a), Int[1/(r - s*x^2), x], x] + Dist[r/(2*a), Int[1/(r + s*x^2), x], x]] /; FreeQ[{a, b}, x] &&  !Gt
Q[a/b, 0]

Rule 335

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + b*(x^(k*n)/c^n))^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 700

Int[((d_) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[d*(d + e*x)^(m - 1)*(
(a + b*x + c*x^2)^(p + 1)/(b*(p + 1))), x] - Dist[d*e*((m - 1)/(b*(p + 1))), Int[(d + e*x)^(m - 2)*(a + b*x +
c*x^2)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[2*c*d - b*e, 0] && NeQ[m + 2
*p + 3, 0] && LtQ[p, -1] && GtQ[m, 1] && IntegerQ[2*p]

Rule 701

Int[((d_) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[2*c*(d + e*x)^(m + 1
)*((a + b*x + c*x^2)^(p + 1)/(e*(p + 1)*(b^2 - 4*a*c))), x] - Dist[2*c*e*((m + 2*p + 3)/(e*(p + 1)*(b^2 - 4*a*
c))), Int[(d + e*x)^m*(a + b*x + c*x^2)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e, m}, x] && NeQ[b^2 - 4*a*c, 0]
 && EqQ[2*c*d - b*e, 0] && NeQ[m + 2*p + 3, 0] && LtQ[p, -1] &&  !GtQ[m, 1] && RationalQ[m] && IntegerQ[2*p]

Rule 708

Int[((d_) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[1/e, Subst[Int[x^m*(
a - b^2/(4*c) + (c*x^2)/e^2)^p, x], x, d + e*x], x] /; FreeQ[{a, b, c, d, e, m, p}, x] && NeQ[b^2 - 4*a*c, 0]
&& EqQ[2*c*d - b*e, 0]

Rubi steps \begin{align*} \text {integral}& = -\frac {d \sqrt {b d+2 c d x}}{2 \left (a+b x+c x^2\right )^2}+\frac {1}{2} \left (c d^2\right ) \int \frac {1}{\sqrt {b d+2 c d x} \left (a+b x+c x^2\right )^2} \, dx \\ & = -\frac {d \sqrt {b d+2 c d x}}{2 \left (a+b x+c x^2\right )^2}-\frac {c d \sqrt {b d+2 c d x}}{2 \left (b^2-4 a c\right ) \left (a+b x+c x^2\right )}-\frac {\left (3 c^2 d^2\right ) \int \frac {1}{\sqrt {b d+2 c d x} \left (a+b x+c x^2\right )} \, dx}{2 \left (b^2-4 a c\right )} \\ & = -\frac {d \sqrt {b d+2 c d x}}{2 \left (a+b x+c x^2\right )^2}-\frac {c d \sqrt {b d+2 c d x}}{2 \left (b^2-4 a c\right ) \left (a+b x+c x^2\right )}-\frac {(3 c d) \text {Subst}\left (\int \frac {1}{\sqrt {x} \left (a-\frac {b^2}{4 c}+\frac {x^2}{4 c d^2}\right )} \, dx,x,b d+2 c d x\right )}{4 \left (b^2-4 a c\right )} \\ & = -\frac {d \sqrt {b d+2 c d x}}{2 \left (a+b x+c x^2\right )^2}-\frac {c d \sqrt {b d+2 c d x}}{2 \left (b^2-4 a c\right ) \left (a+b x+c x^2\right )}-\frac {(3 c d) \text {Subst}\left (\int \frac {1}{a-\frac {b^2}{4 c}+\frac {x^4}{4 c d^2}} \, dx,x,\sqrt {d (b+2 c x)}\right )}{2 \left (b^2-4 a c\right )} \\ & = -\frac {d \sqrt {b d+2 c d x}}{2 \left (a+b x+c x^2\right )^2}-\frac {c d \sqrt {b d+2 c d x}}{2 \left (b^2-4 a c\right ) \left (a+b x+c x^2\right )}+\frac {\left (3 c^2 d^2\right ) \text {Subst}\left (\int \frac {1}{\sqrt {b^2-4 a c} d-x^2} \, dx,x,\sqrt {d (b+2 c x)}\right )}{\left (b^2-4 a c\right )^{3/2}}+\frac {\left (3 c^2 d^2\right ) \text {Subst}\left (\int \frac {1}{\sqrt {b^2-4 a c} d+x^2} \, dx,x,\sqrt {d (b+2 c x)}\right )}{\left (b^2-4 a c\right )^{3/2}} \\ & = -\frac {d \sqrt {b d+2 c d x}}{2 \left (a+b x+c x^2\right )^2}-\frac {c d \sqrt {b d+2 c d x}}{2 \left (b^2-4 a c\right ) \left (a+b x+c x^2\right )}+\frac {3 c^2 d^{3/2} \tan ^{-1}\left (\frac {\sqrt {d (b+2 c x)}}{\sqrt [4]{b^2-4 a c} \sqrt {d}}\right )}{\left (b^2-4 a c\right )^{7/4}}+\frac {3 c^2 d^{3/2} \tanh ^{-1}\left (\frac {\sqrt {d (b+2 c x)}}{\sqrt [4]{b^2-4 a c} \sqrt {d}}\right )}{\left (b^2-4 a c\right )^{7/4}} \\ \end{align*}

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 1.34 (sec) , antiderivative size = 261, normalized size of antiderivative = 1.47 \[ \int \frac {(b d+2 c d x)^{3/2}}{\left (a+b x+c x^2\right )^3} \, dx=\frac {i (d (b+2 c x))^{3/2} \left (i \left (b^2-4 a c\right )^{3/4} \sqrt {b+2 c x} \left (b^2+b c x+c \left (-3 a+c x^2\right )\right )+(3+3 i) c^2 (a+x (b+c x))^2 \arctan \left (1-\frac {(1+i) \sqrt {b+2 c x}}{\sqrt [4]{b^2-4 a c}}\right )-(3+3 i) c^2 (a+x (b+c x))^2 \arctan \left (1+\frac {(1+i) \sqrt {b+2 c x}}{\sqrt [4]{b^2-4 a c}}\right )-(3+3 i) c^2 (a+x (b+c x))^2 \text {arctanh}\left (\frac {(1+i) \sqrt [4]{b^2-4 a c} \sqrt {b+2 c x}}{\sqrt {b^2-4 a c}+i (b+2 c x)}\right )\right )}{2 \left (b^2-4 a c\right )^{7/4} (b+2 c x)^{3/2} (a+x (b+c x))^2} \]

[In]

Integrate[(b*d + 2*c*d*x)^(3/2)/(a + b*x + c*x^2)^3,x]

[Out]

((I/2)*(d*(b + 2*c*x))^(3/2)*(I*(b^2 - 4*a*c)^(3/4)*Sqrt[b + 2*c*x]*(b^2 + b*c*x + c*(-3*a + c*x^2)) + (3 + 3*
I)*c^2*(a + x*(b + c*x))^2*ArcTan[1 - ((1 + I)*Sqrt[b + 2*c*x])/(b^2 - 4*a*c)^(1/4)] - (3 + 3*I)*c^2*(a + x*(b
 + c*x))^2*ArcTan[1 + ((1 + I)*Sqrt[b + 2*c*x])/(b^2 - 4*a*c)^(1/4)] - (3 + 3*I)*c^2*(a + x*(b + c*x))^2*ArcTa
nh[((1 + I)*(b^2 - 4*a*c)^(1/4)*Sqrt[b + 2*c*x])/(Sqrt[b^2 - 4*a*c] + I*(b + 2*c*x))]))/((b^2 - 4*a*c)^(7/4)*(
b + 2*c*x)^(3/2)*(a + x*(b + c*x))^2)

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(323\) vs. \(2(150)=300\).

Time = 2.95 (sec) , antiderivative size = 324, normalized size of antiderivative = 1.82

method result size
derivativedivides \(64 c^{2} d^{5} \left (\frac {\frac {\left (2 c d x +b d \right )^{\frac {5}{2}}}{32 d^{2} \left (4 a c -b^{2}\right )}-\frac {3 \sqrt {2 c d x +b d}}{32}}{\left (\left (2 c d x +b d \right )^{2}+4 a c \,d^{2}-b^{2} d^{2}\right )^{2}}+\frac {3 \sqrt {2}\, \left (\ln \left (\frac {2 c d x +b d +\left (4 a c \,d^{2}-b^{2} d^{2}\right )^{\frac {1}{4}} \sqrt {2 c d x +b d}\, \sqrt {2}+\sqrt {4 a c \,d^{2}-b^{2} d^{2}}}{2 c d x +b d -\left (4 a c \,d^{2}-b^{2} d^{2}\right )^{\frac {1}{4}} \sqrt {2 c d x +b d}\, \sqrt {2}+\sqrt {4 a c \,d^{2}-b^{2} d^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {2 c d x +b d}}{\left (4 a c \,d^{2}-b^{2} d^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {2 c d x +b d}}{\left (4 a c \,d^{2}-b^{2} d^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{256 d^{2} \left (4 a c -b^{2}\right ) \left (4 a c \,d^{2}-b^{2} d^{2}\right )^{\frac {3}{4}}}\right )\) \(324\)
default \(64 c^{2} d^{5} \left (\frac {\frac {\left (2 c d x +b d \right )^{\frac {5}{2}}}{32 d^{2} \left (4 a c -b^{2}\right )}-\frac {3 \sqrt {2 c d x +b d}}{32}}{\left (\left (2 c d x +b d \right )^{2}+4 a c \,d^{2}-b^{2} d^{2}\right )^{2}}+\frac {3 \sqrt {2}\, \left (\ln \left (\frac {2 c d x +b d +\left (4 a c \,d^{2}-b^{2} d^{2}\right )^{\frac {1}{4}} \sqrt {2 c d x +b d}\, \sqrt {2}+\sqrt {4 a c \,d^{2}-b^{2} d^{2}}}{2 c d x +b d -\left (4 a c \,d^{2}-b^{2} d^{2}\right )^{\frac {1}{4}} \sqrt {2 c d x +b d}\, \sqrt {2}+\sqrt {4 a c \,d^{2}-b^{2} d^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {2 c d x +b d}}{\left (4 a c \,d^{2}-b^{2} d^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {2 c d x +b d}}{\left (4 a c \,d^{2}-b^{2} d^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{256 d^{2} \left (4 a c -b^{2}\right ) \left (4 a c \,d^{2}-b^{2} d^{2}\right )^{\frac {3}{4}}}\right )\) \(324\)
pseudoelliptic \(-\frac {3 d \left (-\frac {\sqrt {2}\, c^{2} d^{2} \left (c \,x^{2}+b x +a \right )^{2} \ln \left (\frac {\left (d^{2} \left (4 a c -b^{2}\right )\right )^{\frac {1}{4}} \sqrt {d \left (2 c x +b \right )}\, \sqrt {2}+\sqrt {d^{2} \left (4 a c -b^{2}\right )}+d \left (2 c x +b \right )}{\sqrt {d^{2} \left (4 a c -b^{2}\right )}-\left (d^{2} \left (4 a c -b^{2}\right )\right )^{\frac {1}{4}} \sqrt {d \left (2 c x +b \right )}\, \sqrt {2}+d \left (2 c x +b \right )}\right )}{2}+\arctan \left (\frac {-\sqrt {2}\, \sqrt {d \left (2 c x +b \right )}+\left (d^{2} \left (4 a c -b^{2}\right )\right )^{\frac {1}{4}}}{\left (d^{2} \left (4 a c -b^{2}\right )\right )^{\frac {1}{4}}}\right ) \sqrt {2}\, c^{2} d^{2} \left (c \,x^{2}+b x +a \right )^{2}-\arctan \left (\frac {\sqrt {2}\, \sqrt {d \left (2 c x +b \right )}+\left (d^{2} \left (4 a c -b^{2}\right )\right )^{\frac {1}{4}}}{\left (d^{2} \left (4 a c -b^{2}\right )\right )^{\frac {1}{4}}}\right ) \sqrt {2}\, c^{2} d^{2} \left (c \,x^{2}+b x +a \right )^{2}+\left (-\frac {c^{2} x^{2}}{3}+\left (-\frac {b x}{3}+a \right ) c -\frac {b^{2}}{3}\right ) \left (d^{2} \left (4 a c -b^{2}\right )\right )^{\frac {3}{4}} \sqrt {d \left (2 c x +b \right )}\right )}{8 \left (d^{2} \left (4 a c -b^{2}\right )\right )^{\frac {3}{4}} \left (c \,x^{2}+b x +a \right )^{2} \left (-\frac {b^{2}}{4}+a c \right )}\) \(375\)

[In]

int((2*c*d*x+b*d)^(3/2)/(c*x^2+b*x+a)^3,x,method=_RETURNVERBOSE)

[Out]

64*c^2*d^5*(16*(1/512/d^2/(4*a*c-b^2)*(2*c*d*x+b*d)^(5/2)-3/512*(2*c*d*x+b*d)^(1/2))/((2*c*d*x+b*d)^2+4*a*c*d^
2-b^2*d^2)^2+3/256/d^2/(4*a*c-b^2)/(4*a*c*d^2-b^2*d^2)^(3/4)*2^(1/2)*(ln((2*c*d*x+b*d+(4*a*c*d^2-b^2*d^2)^(1/4
)*(2*c*d*x+b*d)^(1/2)*2^(1/2)+(4*a*c*d^2-b^2*d^2)^(1/2))/(2*c*d*x+b*d-(4*a*c*d^2-b^2*d^2)^(1/4)*(2*c*d*x+b*d)^
(1/2)*2^(1/2)+(4*a*c*d^2-b^2*d^2)^(1/2)))+2*arctan(2^(1/2)/(4*a*c*d^2-b^2*d^2)^(1/4)*(2*c*d*x+b*d)^(1/2)+1)-2*
arctan(-2^(1/2)/(4*a*c*d^2-b^2*d^2)^(1/4)*(2*c*d*x+b*d)^(1/2)+1)))

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.29 (sec) , antiderivative size = 1345, normalized size of antiderivative = 7.56 \[ \int \frac {(b d+2 c d x)^{3/2}}{\left (a+b x+c x^2\right )^3} \, dx=\text {Too large to display} \]

[In]

integrate((2*c*d*x+b*d)^(3/2)/(c*x^2+b*x+a)^3,x, algorithm="fricas")

[Out]

1/2*(3*(c^8*d^6/(b^14 - 28*a*b^12*c + 336*a^2*b^10*c^2 - 2240*a^3*b^8*c^3 + 8960*a^4*b^6*c^4 - 21504*a^5*b^4*c
^5 + 28672*a^6*b^2*c^6 - 16384*a^7*c^7))^(1/4)*((b^2*c^2 - 4*a*c^3)*x^4 + a^2*b^2 - 4*a^3*c + 2*(b^3*c - 4*a*b
*c^2)*x^3 + (b^4 - 2*a*b^2*c - 8*a^2*c^2)*x^2 + 2*(a*b^3 - 4*a^2*b*c)*x)*log(3*sqrt(2*c*d*x + b*d)*c^2*d + 3*(
c^8*d^6/(b^14 - 28*a*b^12*c + 336*a^2*b^10*c^2 - 2240*a^3*b^8*c^3 + 8960*a^4*b^6*c^4 - 21504*a^5*b^4*c^5 + 286
72*a^6*b^2*c^6 - 16384*a^7*c^7))^(1/4)*(b^4 - 8*a*b^2*c + 16*a^2*c^2)) - 3*(c^8*d^6/(b^14 - 28*a*b^12*c + 336*
a^2*b^10*c^2 - 2240*a^3*b^8*c^3 + 8960*a^4*b^6*c^4 - 21504*a^5*b^4*c^5 + 28672*a^6*b^2*c^6 - 16384*a^7*c^7))^(
1/4)*((b^2*c^2 - 4*a*c^3)*x^4 + a^2*b^2 - 4*a^3*c + 2*(b^3*c - 4*a*b*c^2)*x^3 + (b^4 - 2*a*b^2*c - 8*a^2*c^2)*
x^2 + 2*(a*b^3 - 4*a^2*b*c)*x)*log(3*sqrt(2*c*d*x + b*d)*c^2*d - 3*(c^8*d^6/(b^14 - 28*a*b^12*c + 336*a^2*b^10
*c^2 - 2240*a^3*b^8*c^3 + 8960*a^4*b^6*c^4 - 21504*a^5*b^4*c^5 + 28672*a^6*b^2*c^6 - 16384*a^7*c^7))^(1/4)*(b^
4 - 8*a*b^2*c + 16*a^2*c^2)) + 3*(c^8*d^6/(b^14 - 28*a*b^12*c + 336*a^2*b^10*c^2 - 2240*a^3*b^8*c^3 + 8960*a^4
*b^6*c^4 - 21504*a^5*b^4*c^5 + 28672*a^6*b^2*c^6 - 16384*a^7*c^7))^(1/4)*(-I*(b^2*c^2 - 4*a*c^3)*x^4 - I*a^2*b
^2 + 4*I*a^3*c - 2*I*(b^3*c - 4*a*b*c^2)*x^3 - I*(b^4 - 2*a*b^2*c - 8*a^2*c^2)*x^2 - 2*I*(a*b^3 - 4*a^2*b*c)*x
)*log(3*sqrt(2*c*d*x + b*d)*c^2*d - 3*(c^8*d^6/(b^14 - 28*a*b^12*c + 336*a^2*b^10*c^2 - 2240*a^3*b^8*c^3 + 896
0*a^4*b^6*c^4 - 21504*a^5*b^4*c^5 + 28672*a^6*b^2*c^6 - 16384*a^7*c^7))^(1/4)*(I*b^4 - 8*I*a*b^2*c + 16*I*a^2*
c^2)) + 3*(c^8*d^6/(b^14 - 28*a*b^12*c + 336*a^2*b^10*c^2 - 2240*a^3*b^8*c^3 + 8960*a^4*b^6*c^4 - 21504*a^5*b^
4*c^5 + 28672*a^6*b^2*c^6 - 16384*a^7*c^7))^(1/4)*(I*(b^2*c^2 - 4*a*c^3)*x^4 + I*a^2*b^2 - 4*I*a^3*c + 2*I*(b^
3*c - 4*a*b*c^2)*x^3 + I*(b^4 - 2*a*b^2*c - 8*a^2*c^2)*x^2 + 2*I*(a*b^3 - 4*a^2*b*c)*x)*log(3*sqrt(2*c*d*x + b
*d)*c^2*d - 3*(c^8*d^6/(b^14 - 28*a*b^12*c + 336*a^2*b^10*c^2 - 2240*a^3*b^8*c^3 + 8960*a^4*b^6*c^4 - 21504*a^
5*b^4*c^5 + 28672*a^6*b^2*c^6 - 16384*a^7*c^7))^(1/4)*(-I*b^4 + 8*I*a*b^2*c - 16*I*a^2*c^2)) - (c^2*d*x^2 + b*
c*d*x + (b^2 - 3*a*c)*d)*sqrt(2*c*d*x + b*d))/((b^2*c^2 - 4*a*c^3)*x^4 + a^2*b^2 - 4*a^3*c + 2*(b^3*c - 4*a*b*
c^2)*x^3 + (b^4 - 2*a*b^2*c - 8*a^2*c^2)*x^2 + 2*(a*b^3 - 4*a^2*b*c)*x)

Sympy [F(-1)]

Timed out. \[ \int \frac {(b d+2 c d x)^{3/2}}{\left (a+b x+c x^2\right )^3} \, dx=\text {Timed out} \]

[In]

integrate((2*c*d*x+b*d)**(3/2)/(c*x**2+b*x+a)**3,x)

[Out]

Timed out

Maxima [F(-2)]

Exception generated. \[ \int \frac {(b d+2 c d x)^{3/2}}{\left (a+b x+c x^2\right )^3} \, dx=\text {Exception raised: ValueError} \]

[In]

integrate((2*c*d*x+b*d)^(3/2)/(c*x^2+b*x+a)^3,x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(4*a*c-b^2>0)', see `assume?` f
or more deta

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 567 vs. \(2 (150) = 300\).

Time = 0.31 (sec) , antiderivative size = 567, normalized size of antiderivative = 3.19 \[ \int \frac {(b d+2 c d x)^{3/2}}{\left (a+b x+c x^2\right )^3} \, dx=\frac {3 \, {\left (-b^{2} d^{2} + 4 \, a c d^{2}\right )}^{\frac {1}{4}} c^{2} d \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} {\left (-b^{2} d^{2} + 4 \, a c d^{2}\right )}^{\frac {1}{4}} + 2 \, \sqrt {2 \, c d x + b d}\right )}}{2 \, {\left (-b^{2} d^{2} + 4 \, a c d^{2}\right )}^{\frac {1}{4}}}\right )}{\sqrt {2} b^{4} - 8 \, \sqrt {2} a b^{2} c + 16 \, \sqrt {2} a^{2} c^{2}} + \frac {3 \, {\left (-b^{2} d^{2} + 4 \, a c d^{2}\right )}^{\frac {1}{4}} c^{2} d \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} {\left (-b^{2} d^{2} + 4 \, a c d^{2}\right )}^{\frac {1}{4}} - 2 \, \sqrt {2 \, c d x + b d}\right )}}{2 \, {\left (-b^{2} d^{2} + 4 \, a c d^{2}\right )}^{\frac {1}{4}}}\right )}{\sqrt {2} b^{4} - 8 \, \sqrt {2} a b^{2} c + 16 \, \sqrt {2} a^{2} c^{2}} + \frac {3 \, {\left (-b^{2} d^{2} + 4 \, a c d^{2}\right )}^{\frac {1}{4}} c^{2} d \log \left (2 \, c d x + b d + \sqrt {2} {\left (-b^{2} d^{2} + 4 \, a c d^{2}\right )}^{\frac {1}{4}} \sqrt {2 \, c d x + b d} + \sqrt {-b^{2} d^{2} + 4 \, a c d^{2}}\right )}{2 \, {\left (\sqrt {2} b^{4} - 8 \, \sqrt {2} a b^{2} c + 16 \, \sqrt {2} a^{2} c^{2}\right )}} - \frac {3 \, {\left (-b^{2} d^{2} + 4 \, a c d^{2}\right )}^{\frac {1}{4}} c^{2} d \log \left (2 \, c d x + b d - \sqrt {2} {\left (-b^{2} d^{2} + 4 \, a c d^{2}\right )}^{\frac {1}{4}} \sqrt {2 \, c d x + b d} + \sqrt {-b^{2} d^{2} + 4 \, a c d^{2}}\right )}{2 \, {\left (\sqrt {2} b^{4} - 8 \, \sqrt {2} a b^{2} c + 16 \, \sqrt {2} a^{2} c^{2}\right )}} - \frac {2 \, {\left (3 \, \sqrt {2 \, c d x + b d} b^{2} c^{2} d^{5} - 12 \, \sqrt {2 \, c d x + b d} a c^{3} d^{5} + {\left (2 \, c d x + b d\right )}^{\frac {5}{2}} c^{2} d^{3}\right )}}{{\left (b^{2} d^{2} - 4 \, a c d^{2} - {\left (2 \, c d x + b d\right )}^{2}\right )}^{2} {\left (b^{2} - 4 \, a c\right )}} \]

[In]

integrate((2*c*d*x+b*d)^(3/2)/(c*x^2+b*x+a)^3,x, algorithm="giac")

[Out]

3*(-b^2*d^2 + 4*a*c*d^2)^(1/4)*c^2*d*arctan(1/2*sqrt(2)*(sqrt(2)*(-b^2*d^2 + 4*a*c*d^2)^(1/4) + 2*sqrt(2*c*d*x
 + b*d))/(-b^2*d^2 + 4*a*c*d^2)^(1/4))/(sqrt(2)*b^4 - 8*sqrt(2)*a*b^2*c + 16*sqrt(2)*a^2*c^2) + 3*(-b^2*d^2 +
4*a*c*d^2)^(1/4)*c^2*d*arctan(-1/2*sqrt(2)*(sqrt(2)*(-b^2*d^2 + 4*a*c*d^2)^(1/4) - 2*sqrt(2*c*d*x + b*d))/(-b^
2*d^2 + 4*a*c*d^2)^(1/4))/(sqrt(2)*b^4 - 8*sqrt(2)*a*b^2*c + 16*sqrt(2)*a^2*c^2) + 3/2*(-b^2*d^2 + 4*a*c*d^2)^
(1/4)*c^2*d*log(2*c*d*x + b*d + sqrt(2)*(-b^2*d^2 + 4*a*c*d^2)^(1/4)*sqrt(2*c*d*x + b*d) + sqrt(-b^2*d^2 + 4*a
*c*d^2))/(sqrt(2)*b^4 - 8*sqrt(2)*a*b^2*c + 16*sqrt(2)*a^2*c^2) - 3/2*(-b^2*d^2 + 4*a*c*d^2)^(1/4)*c^2*d*log(2
*c*d*x + b*d - sqrt(2)*(-b^2*d^2 + 4*a*c*d^2)^(1/4)*sqrt(2*c*d*x + b*d) + sqrt(-b^2*d^2 + 4*a*c*d^2))/(sqrt(2)
*b^4 - 8*sqrt(2)*a*b^2*c + 16*sqrt(2)*a^2*c^2) - 2*(3*sqrt(2*c*d*x + b*d)*b^2*c^2*d^5 - 12*sqrt(2*c*d*x + b*d)
*a*c^3*d^5 + (2*c*d*x + b*d)^(5/2)*c^2*d^3)/((b^2*d^2 - 4*a*c*d^2 - (2*c*d*x + b*d)^2)^2*(b^2 - 4*a*c))

Mupad [B] (verification not implemented)

Time = 9.38 (sec) , antiderivative size = 255, normalized size of antiderivative = 1.43 \[ \int \frac {(b d+2 c d x)^{3/2}}{\left (a+b x+c x^2\right )^3} \, dx=\frac {3\,c^2\,d^{3/2}\,\mathrm {atan}\left (\frac {\sqrt {b\,d+2\,c\,d\,x}\,{\left (b^2-4\,a\,c\right )}^{7/4}}{\sqrt {d}\,\left (16\,a^2\,c^2-8\,a\,b^2\,c+b^4\right )}\right )}{{\left (b^2-4\,a\,c\right )}^{7/4}}-\frac {6\,c^2\,d^5\,\sqrt {b\,d+2\,c\,d\,x}-\frac {2\,c^2\,d^3\,{\left (b\,d+2\,c\,d\,x\right )}^{5/2}}{4\,a\,c-b^2}}{{\left (b\,d+2\,c\,d\,x\right )}^4-{\left (b\,d+2\,c\,d\,x\right )}^2\,\left (2\,b^2\,d^2-8\,a\,c\,d^2\right )+b^4\,d^4+16\,a^2\,c^2\,d^4-8\,a\,b^2\,c\,d^4}+\frac {3\,c^2\,d^{3/2}\,\mathrm {atanh}\left (\frac {\sqrt {b\,d+2\,c\,d\,x}\,{\left (b^2-4\,a\,c\right )}^{7/4}}{\sqrt {d}\,\left (16\,a^2\,c^2-8\,a\,b^2\,c+b^4\right )}\right )}{{\left (b^2-4\,a\,c\right )}^{7/4}} \]

[In]

int((b*d + 2*c*d*x)^(3/2)/(a + b*x + c*x^2)^3,x)

[Out]

(3*c^2*d^(3/2)*atan(((b*d + 2*c*d*x)^(1/2)*(b^2 - 4*a*c)^(7/4))/(d^(1/2)*(b^4 + 16*a^2*c^2 - 8*a*b^2*c))))/(b^
2 - 4*a*c)^(7/4) - (6*c^2*d^5*(b*d + 2*c*d*x)^(1/2) - (2*c^2*d^3*(b*d + 2*c*d*x)^(5/2))/(4*a*c - b^2))/((b*d +
 2*c*d*x)^4 - (b*d + 2*c*d*x)^2*(2*b^2*d^2 - 8*a*c*d^2) + b^4*d^4 + 16*a^2*c^2*d^4 - 8*a*b^2*c*d^4) + (3*c^2*d
^(3/2)*atanh(((b*d + 2*c*d*x)^(1/2)*(b^2 - 4*a*c)^(7/4))/(d^(1/2)*(b^4 + 16*a^2*c^2 - 8*a*b^2*c))))/(b^2 - 4*a
*c)^(7/4)